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Executive Summary

Fine-scale seasonal average weather forecasts are produced by Weather
Logistics from global weather predictors and measurements using a novel
empirical model. Forecasts of this kind allow better management of
agricultural risks and food supply chain operations. Uncertainties arise
at each step in the forecast process and propagate through to affect
the final fine-scale forecasts; quanitifying this uncertainty is crucial for
allowing better decision making and cost-benefit analyses.

The ares of investigation posed to the study group were to identify
the best global predictors to improve the forecasts and to quantify the
uncertainty that propagtes through the down-scaling process of the fore-
casting.

Kalmann filters were investigated to attempt to improve the predictive
capabilities of the time series measurements of, for example, the El Nino
index. This method reduces the influence of noise in the measurements
and consequently the uncertainty in the data input into the empirical
models.

The second area looked at was correlating various global measurements
to the temperature in the North-west of England to attempt to identify
the most important at different times of year. It was found that the large
scale predictors that are most important in the summer may not be as
efficient in the winter and a different set of predictors may need to be
identified to predict the weather during the colder months. A weighted
linear combination of a summer and winter predictor was derived which
could offer a method of combining two different seasonal relations into
one empirical relation valid throughout the year.
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1 Introduction and Problem Overview

(1.1) Forecast downscaling is implemented by Weather Logistics by combining a
set of regional information from global weather predictions with measure-
ments; from satellites, in-situ observations and re-analyses. Fine-scale sea-
sonal climate predictions, describing average weather conditions, are then
produced in conjunction with output uncertainties on a 25km surface grid.
Forecasts of this kind allow better management of agricultural risks and
food supply chain operations. The company adopts an empirical (diagnos-
tic) model that combines independent datasets from around the globe, which
differs from a conventional regionally nested model.

(1.2) Operational seasonal predictions are produced by extracting and process-
ing measurements and re-analyses; summarising natural variability in atmo-
spheric, oceanic and land-surface variables in broad horizontal areas while
also ensuring that any decadal climate trends are removed. Monthly to
seasonal cycles generally offer the best predictive skill for seasonal forecast-
ing and a selection process is first applied to identify these climate vari-
ables. Broad descriptions, in terms of character and spatial area, are used
to describe global predictors. Those that best correlate with the monthly
to seasonal variability monitored at historical weather stations are selected
and empirical-statistical relationships formed to demonstrate how they are
linked. The company then applies these relationships to the same predictors,
which are obtained from seasonal forecast models.

(1.3) The problem is that uncertainties arise at each step in the forecast process:
such as selecting broad features of the upper-level winds (jet stream). Jet
stream attributes are summarised and condensed into a forecast index of-
fering commercial potential at least on a diagnostic level. Operational skill
is, however, diminished by overstatement of the predictive capabilities of jet
stream dynamics, both its realistic characterisation and mechanistic proof
in the process for generating a new climate index. Other prediction uncer-
tainties arise from the use of mid-latitude sea-surface temperature data, par-
ticularly for the North Atlantic that offers potential for winter temperature
forecasting. Summer rainfall forecast is also troublesome, despite accurate
representations of tropical ocean dynamics.

(1.4) Several areas of focus have been identified; assessed using time series of pre-
dictor measurements and forecast data: selection of jet stream parameters to
form a predictive index, mechanistic studies to assess the validity of the sea-
sonal forecast process, and refining and lowering uncertainties in numerical
weather predictions.

(1.5) The company wishes to improve estimates of predictand uncertainties; al-
lowing better decision making and unbiased calculation of risk. This will
allow better cost-benefit analyses for its supplied industries; such as for the
(re)insurance and in the trading of soft commodities. While the company
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understands the uncertainties of the measurements and re-analyses, they are
unsure about how these transcribe when downscaling is applied to opera-
tional forecasts.

2 The solution

2.1 Kalmann Filter

2.1.1 Introduction

(2.1.1) A Kalman filter is both a tool and a theoretical approach to make predic-
tions on the state of a system based on an actual measurement. It tells
us how to combine two (or more) different noisy estimates of the state of
the system to produce a better estimate of the state than either estimates
taken in isolation.

(2.1.2) In the current problem we have a time series of observations of the El
Nino index, yt, which we assume are subject to noise. Our second way
of estimating the El Nino is to use a model which will also be subject to
error. The generic state space model is as follows

yt = Zαt + ζt, ζt = N(0, σ2
ζt),

αt+1 = Mαt +Rξt, ξt = N(0, σ2
ξt).

Here

• Z is the observation operator,

• αt is the true state at time t (which cannot be directly observed),

• ζt is the observation error,

• M is a linear operator representing our model of how the true state evolves
in time,

• ξt is the model error,

• R is an operator to perform moving averaging on the model error (if this is
part of the model).

(2.1.3) The Kalman filter is a recursive algorithm to estimate the state αt given
the state at the previous time, αt−1, and the observation yt at time t:

vt = yt − Zαt, Ft = ZPtZ
T + σ2

ξ ,
αt+1 = Mαt +Ktvt, Pt+1 = MPt(M −KtZ)T +Rσ2

ξR
T ,

(1)
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where

• Kt = MPtZ
TF−1

t is the Kalman gain matrix.

• Pt is the estimated covariance matrix of the hidden state αt (calculating Pt
as one goes along to estimate the uncertainty in the filtered time series.

Figure 1: A flow chart showing the process involved in developing a better estimate
of the state using a Kalman filter.

2.1.2 The model

(2.1.4) The first step is to come up with a model M . In order to do this we look at the ACF
of the data: the ACF of the raw data decays slowly thus indicating that the series
has long term memory (or non-stationarity). We then calculated the differenced time
series:

y∗t = yt − yt−1.

Plotting the ACF of y∗t indicates that the ACF of the difference decays within two or
three lags. The series y∗t is therefore stationary and should be plausibly modelled by a
simple autoregressive moving average process

y∗t+1 = φ1y
∗
t + φ2y

∗
t−2 + θ1ξt−1 + ξt,

(here according to an ARIMA(2,1) process). This is equivalent to the following state
space from

yt = (1, 1, 0)αt + ζt,

αt+1 =

 1 1 0
0 φ1 1
0 φ2 0

αt +

 0
1
θ1

 ξt+1, (2)
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where the hidden state is

αt =

 yt−1
y∗t

φ2y
∗
t−1 + θ1ξt

 .

The next step is to estimate the appropriate values for the parameters φ1, φ2, θ1, σ
2
ζ , σ

2
ξ

in order to make the model (2) a good simulation of the observed data yt.

-1

-0.5

 0

 0.5

 1

 0  50  100  150  200

A
C

F

months

original ACF
differenced ACF

Figure 2: ACF of the El Nino time series

(2.1.5) Since we have a model for the series we can now calculate, in principle, the probability
P (y1, . . . , yn) of observing the sequence of observations (y1, . . . , yn) for any given values
of the parameters φ1, φ2, θ1, σ

2
ζ , σ

2
ξ . Since the model (2) goes one step at a time:

P (y1, . . . , yn) = P (yn|Yn−1)p(Yn−1),

where Yi is shorthand for the sequence {y1, y2, . . . , yi} by recursion. Therefore:

P (Yn) = Πn
i=1p(yi|Yi−1).

Part of the Kalman filter is that it gives an optimal, in the sense of minimal variance,
normally distributed estimate of yt given the sequence {y1y2, . . . yt−1} of previously
observed values. Therefore,

P (yi|Yi−1) = N(αi, Fi).

Thus, the probability or likelihood of the observed data {y1, . . . , yn} given the model
(2) is written as a function of the model parameters is

L(φ1, φ2, θ1, σ
2
ζ , σ

2
ξ ) = Πn

t=1

1√
2πFt

e−
1
2

(yy−αt)2

Ft .

It can be noted that this is explicitly computed from (1). The log-likelihood is

logL = −n
2

log 2π − 1

2

n∑
i=1

logFt +
(yt − αt)2

Ft
.
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The values of the parameters which best fit the data are obtained by maximising logL
with respect to the parameters

{φ∗1, φ∗2, θ∗1 , σ∗ζ , σ∗ξ} = arg max
{φ1,φ2,θ1,σ2

ζ ,σ
2
ξ}

logL.

We did this maximisation numerically in Mathematica using the downhill simplex al-
gorithm. The results are:

• φ∗1 ≈ 0.57,

• φ∗2 ≈ −0.29,

• θ∗1 ≈ 0.54,

• σζ ≈ 0.19,

• σξ ≈ 0.22.

Now that the model parameters are known, performing the filtering is simply a case of plugging
Eqs. (1.2) into the Kalman filter (1.1) and iterating forward. To initialize the filter we used

α1 =

 0
0
0

 , P1 =

 1 0 0
0 1 0
0 0 1

 .

As a result there is an initial transient which dies away quite quickly as the filter assimilates the
observations (this ad hoc initialisation could be improved in principle but we didn’t look into this).

2.1.3 Forecasting

(2.1.6) To run the filter in forecast mode we simply iterate the Kalman filter equations (1.1)
into the future with Kt = 0. We tried to do a three month forecast. The resulting three
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Figure 3: LEFT: estimation of states; RIGHT: forecast. Note here a mismatch due
to an indexing error in our preliminary version of the numerical model.

month forecast is a incredibly accurate compared to the measured data with the peak
around month 130 captured almost exactly. Similarly the smaller peak around months
150 and the approximately constant negative region in the initial 120 months are both
captured by the prediction.
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2.2 Empirical Relationships

(2.2.1) We now attempt to use the existing data provided by weather logistics in order to make
long term weather forecasts by deriving empirical relationships between large scale
predictors and the resulting localised weather. A vast amount of data was available
to us spanning many decades and every region of the UK. We chose to restrict out
attention to the northwest of England as this was where the study group was being
held and we focused on trying to predict the temperature in this region.

2.2.1 Identifying the Key Predictors

(2.2.2) Figure 2.2.1 shows the correlation coefficient between 6 of the large scale predictors and
the monthly averaged temperature in the northwest of England over a 40 year period.
The first five properties are proposed relevant characteristics of the jet stream. The
first, J , is a measure of the maximum wind speed achieved by part of the jet stream
along its full length and is given in terms of an index between 1 and 10. The position of
the jet stream is averaged over two large regions over the Atlantic ocean, one over the
west Atlantic, and the second close to the UK. The position and standard deviation, a
measure of the width of the jet, are calculated in both domains and are labelled P1,
P2, σ1 and σ2, respectively. The fifth predictor is the sea surface temperature around
the UK.

Figure 4: The monthly averaged correlation coefficients between 6 predictors and
the temperature in the northwest of England over 40 years.

(2.2.3) The first observation of Figure 2.2.1 is the high monthly variability in some of the
predictors, especially σ2. This is not believed to be a observable property and so we
first calculated correlation coefficients over two month periods in an attempt to smooth
out the osciallations. We further chose 3 of the predictors to focus on based on the size
of the correlation coefficient. The jet stream strength shows good correlation in both
the winter and the summer months. The position and standard deviation of the jet
close to the UK have good correlation in winter and summer respectively with little to
none in the other seasons. The two monthly averaged correlation coefficients for these
3 predictors are shown in Figure 2.2.1 by the solid lines with the one monthly averages
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shown by the dashed lines for comparison. Taking the two monthly averages has the
desired effect of smoothing out the osciallations in the previous figure.

Figure 5: The two monthly averaged correlation coefficients between the chosen 3
predictors and the temperature in the northwest of England over 40 years.

(2.2.4) It is interesting that the position of the jet stream is important in the winter but that
the standard deviation becomes much more significant in the summer. To explain this
we calculated the maximum and minimum positions of the jet stream in the 40 year
period that we had the data for. This is shown in Figure 2.2.1. The figure shows that
there is a much larger variation in the latitudinal position of the jet stream in the winter
months than in the summer. Regardless of the standard deviation, if the jet stream
is positioned at a latitude of 58o in the winter it is unlike to ever be wide enough to
stretch as far south as 40o. In the summer, however, there is only a 10ø variation in the
position and a wide jetstream will lie over a very similar region. If the jet stream is very
narrow then this 10o difference will become much more significant. For this reason, the
standard deviation becomes a more important predictor in the summer months. The
intercorrelation between the standard deviation and the position in the summer months
is not explored but we expect the position will become more important if th standard
deviation is small.

2.2.2 Deriving Empirical Relations

(2.2.5) Weather Logistics currently only use a single relationship between the predictors and
the weather which is used for all seasons. We propose two temperature predictors, one
for the summer and one for the winter,

TW = TW (J, P2),

TS = TS(J, σ2),

which, for simplicity, depend linearly on the two independent variables

TW = a1(J − a2)(a3P2 + a4),

TS = b1(J − b2)(b3σ2 + b4).
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Figure 6: The maximum and minimum position of the jet stream in the two domains
over the Atlantic.

The ai and the bi are found by minimising the errors between these predictors and the
data using the L2 norm.

min
ai
||TW − T ||2,

min
bi
||TS − T ||2.

Here T is the actual temperature at the same time as the predictors are measured.

(2.2.6) We label the numerical number of the month by Nm starting with 1 for January. An
all season predictor is formed by taking a weighted sum

T (J, P2, SD2) = α(Nm)TW (J, P2) + β(Nm)TS(J, SD2).

where

α(Nm) =
1

2
+

1

2
cos

(
2π

12
(Nm − 1.5)

)
,

β(Nm) =
1

2
− 1

2
cos

(
2π

12
Nm

)
.

These relations are chosen so that the peak in the cosine corresponds to the peak in
correlation, as seen in Figure 2.2.1, of P2 and σ2, respectively.

(2.2.7) The two monthly correlation coefficients of the all season predictor are shown in Figure
2.2.2. The correlation of the individual predictors are shown by the dashed lines and
the summer, winter and all season predictor are shown by the solid lines. In the summer
months the summer predictor which combines the predictive power of the jet stream
strength and standard deviation offers a notable improvement on the correlation with
temperature than the two individual predictors independently. This figure could be
improved on further by adding additional predictors. The winter predictor correlates
slightly better than just the position of the jet stream but not by much. This is
rather surprising since both the position and strength of the jet stream each correspond
very well and we expected a marked improvement when combining them. A possible
explanation for this is that there is some correlation between the strength and position
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Figure 7: Correlation of the combine predictors.

of the jet stream and although the two both correlate with temperature there is no
additional information that is obtained by combining them.

2.2.3 Predictive Capability

(2.2.8) There seems to be a reasonable correlation between our all season predictor and the
temperature in the northwest of England. The question remains whether the predicitons
of the jet stream strength, position and standard deviation are sufficiently accurate to
offer comparable correlation. We had access to predictions of these quantities from a
13 year period and the simulations were started at 3 monthly intervals and run for 3
months at a time.

Figure 8: The correlation between the predicted values of the predictors against
measured temperature in the northwest of England.

(2.2.9) The correlation between the predicted values of the predictors is shown in Figure 8.
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Initally, the graph appears to show little correlation but there does appear to be roughly
3 monthly peaks in the correlation. These are due to the method used to obtain the
predictions of the predictors; the simulations are initiated every 3 months and so the
intermediate months are one, two and three month forecasts with the one month fore-
casts corresponding to the peaks in the correlation because of their better predicitve
capabilities. The two month and three month forecasts of the predictors are less ac-
curate and consequenty correlate less well with the observed temperatures. Another
limitation is that we only had access to 13 years of predictions which is not necessarily
sufficient to obtain statistically significant results.

(2.2.10) Despite the afore mentioned limitations, the summer predictor appears to work fairly
well in May and August (months 5 and 8 respectively) which roughly correspond to
the one month forecasts. The winter predictor works best in March and November but
definitely has more success at the end of the year than at the start. The jet stream
seems to be most accurately predicted in the winter months but not in the summer.
Interestingly, the predicted position seems to correlate better with the temperature in
the summer than the actual measurements did.

3 Conclusions

(3.0.11) Applying the Kalman filter to the El Nino index turned out to be incredibly effective
and an accurate 3 month forecast was produced which matched to a high degree of
accuracy with the measurements. This approach could be applied to further indexes
and data sets to improve the overall predctive capabilities of Weather logistic’s empirical
forecasting model.

(3.0.12) The study into the correlation between different global predictors and the downscale
temperature measurements in the North-west of England identified the possibility that
different predictors may be necessary at different times of year. The example found
was that there is more variability in the latitudinal position of jet stream in the winter
months than in the summer and as a result the temperature was less influenced by
position and more by the width or standard deviation of the jet stream.

(3.0.13) A further area of work that was identified but not investigated due to time constraints
was that there is likely to be a time delay in the influence of some global predictors
to the downscale weather. The El Nino is measured in the east Pacific and is unlikely
to have immediate consequences on the UK’s climate; often it is linked to the winter
weather in the UK despite occuring the summer months. The predictors investigated in
Section 2.2 correlated measurements with same-time UK temperature and as a result
the predictors that were found to have to the most effect were the measurements taken
closest to the UK. The position of the jet stream over the west Atlantic was found
to have little effect using this method but it could be that there is a 2-4 week delay
in its influence. This is suggested as future work along with studying the effect of the
Kalmann filter in the earlier sections which was only applied to the El Nino index which
was found not to have an immediate effect on the UK temperature.
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